ORIGINAL PAPER

Eu³⁺, Yb³⁺ and Eu³⁺-Yb³⁺ Complexes with Salicylic Acid and 1,10-Phenanthroline: Synthesis, Photoluminescent Properties and Energy Transfer

Garima Sharma · Anudeep Kumar Narula

Received: 7 September 2014 / Accepted: 20 January 2015 / Published online: 5 February 2015 © Springer Science+Business Media New York 2015

Abstract This paper reports the synthesis of mononuclear Eu³⁺, Yb³⁺ and binuclear Eu³⁺-Yb³⁺ complexes by solution technique, maintaining the stoichiometric ratios of salicylic acid (sal) and 1,10-phenanthroline (phen) as ligands and their structural, optical and morphological properties were demonstrated. The FTIR absorption spectra indicates that sal and phen are coordinated to the rare earth ion through the chemical bonds formed between oxygen and nitrogen atoms of the ligands and rare earth ion. The UV-vis absorption spectra of the complexes reflect the absorption spectra of the ligands and there is no significant change in the wavelength and band profiles between the spectra of the ligands and that of complexes except a slight red shift. The photoluminescent emission spectra of the complexes in visible and near-infrared (NIR) region was recorded and indicated the emission quenching in complex (2) due to the energy transfer from Eu³⁺ ion to Yb³⁺ ion. The morphological properties of the complexes as characterized by SEM revealed different morphologies of mononuclear and binuclear complexes.

Keywords Rare earth complex · Photoluminescence · Energy transfer · Near infrared · Salicylic acid · 1,10-phenanthroline

Introduction

The metal organic frameworks (MOF's) have been intensively studied in recent years due to their unique photophysical properties and potential applications in

G. Sharma · A. K. Narula (🖂)

the next generation of full color flat panel displays [1-4], probes and labels in a variety of biological and chemical applications [5, 6], components in optical telecommunications and novel optoelectronic devices [7-9]. Among the rare earth complexes, the photoluminescent properties of europium complexes are particular and attractive in the visible region, however the absorption and emission cross section of europium complexes is small due to spin and parity forbidden f-f transitions [10-12], thus requiring the use of organic chromophores that possess a reasonably large molar absorption cross section ($\in = 10^4 - 10^5 \text{ M}^{-1} \text{ cm}^{-1}$) to indirectly excite the metal centre and sensitize the luminescence. Among the trivalent lanthanide ions, Eu(III) is one of the most emissive, having $4f^6$ configuration with ${}^{7}F_{0}$ as the ground state and long lived ${}^{5}D_{0}$ excited state. The emission spectra of Eu(III) ion consists of sharp and narrow peaks corresponding to the characteristic ${}^{5}D_{0} \rightarrow {}^{7}F_{I}$ (J=0-4) transitions. The most intense peaks are due to ${}^5D_0 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_2$ transitions located around 592 and 615 nm respectively where the most intense transition at 615 nm is hypersensitive transition which is sensitive to the metal ion environment. Recently, the luminescent materials with the emissions in the near- infrared region such as Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III) and Er(III) have gained much interest due to their applications in telecommunication network as optical signal amplifier, probes for bioassays because human tissue is relatively transparent to near infrared light at 1000 nm [13-15]. Yb³⁺ ion is usually a prime candidate to be chosen due to its luminescent efficiency close to 100 % and relatively simple electronic structure of two energy level manifolds: the ${}^{2}F_{7/2}$ ground state and $^2F_{5/2}$ excited state around at 10,000 \mbox{cm}^{-1} in

University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078, India e-mail: researchchemlab58@gmail.com

the NIR region. [16, 17]. The rare earth ion couples such as $RE^{3+}-Yb^{3+}$ can be efficiently utilized for near infrared (NIR) quantum cutting (QC) materials. The energy gap of ${}^{5}D_{2} - {}^{7}F_{0}$ transition in Eu^{3+} is approximately twice as large as that of ${}^{2}F_{5/2} - {}^{2}F_{7/2}$ transition in Yb^{3+} which facilitates the energy transfer between Eu^{3+} ion to Yb^{3+} ion [18, 19]. However, to our knowledge the mixed rare earth complexes showing energy transfer from one rare earth ion to other have been less studied.

In this work, we report the synthesis of mononuclear Eu^{3+} , Yb^{3+} and dinuclear Eu^{3+} - Yb^{3+} complexes with salicylic acid and 1,10-phenanthroline. The structural characterizations, photoluminescence emissions in the visible and NIR region, mean decay lifetimes and morphologies properties of the complexes have been evaluated. The emission spectra of the complexes show an efficient energy transfer mechanism between Eu^{3+} ion and Yb^{3+} ion . We expect that these rare earth ion couples can be efficiently utilized in optoelectronic devices and quantum cutting materials.

Experimental

Materials and Methods

EuCl₃ (anh), YbCl₃ (anh), salicylic acid (sal, 99 %), 1,10phenanthroline (phen, 99.5 %) were procured from Sigma Aldrich and used as received without any further purifications. Ethanol (CH₃OH, 99.9 %) of analytical grade was used as such without any further purification. The elemental analysis was performed using GmbH Vario EL CHNS Elemental Analyzer. Fourier Transform Infra Red (FTIR) spectra were acquired on a Perkin Elmer Spectrometer in the range of 4000–400 cm⁻¹. Ultraviolet absorption spectra $(1 \times 10^{-5} \text{ mol})$ L^{-1} , ethanol solution) were recorded by Shimadzu UV-1601 spectrometer. Photoluminescence measurements were done on a Perkin Elmer LS55 fluorescence spectrophotometer equipped with a 150W Xenon lamp as the excitation source. Photoluminescence decay measurements were performed on Horiba Jobin-Yvon FL-3-22 spectrofluorometer. The morphology of the synthesized complexes was studied by

Table 1 Elemental analysis results of complexes (a)

Complexes	Experimental values (calculated values)		
	% C	% Н	% N
[Eu(sal) ₃ (phen)]	53.11 (53.09)	3.51 (3.48)	3.72 (3.75)
[Eu 0.5Yb 0.5 (sal)3(phen)]	52.31 (52.34)	3.45 (3.43)	3.68 (3.70)
[Yb(sal) ₃ (phen)]	51.64 (51.62)	3.42 (3.39)	3.63 (3.65)

^(a) The values in brackets are the calculated ones

Scanning Electron Microscopy (SEM) using Carl Zeiss Scanning Electron Microscope.

Synthesis of Complexes [Eu(sal)₃(phen)] (1) and [Yb(sal) ₃(phen)] (3)

The complex (1) was synthesized by taking sal (1.5 mmol) and phen (0.5 mmol) in anhydrous ethanol solution (10 ml) and the reaction mixture was stirred for half an hour. The pH of the solution was adjusted between 6 and 7 with dilute NaOH solution (1 mol L^{-1}). EuCl₃ (1 mmol) solution was added slowly dropwise to the ligand solution under stirring and the resulting solution was refluxed for 3–4 h at 70 °C with continuous stirring. The white coloured precipitates were filtered, washed with ethanol and then dried in a vacuum oven. The complex (3) was synthesized using YbCl₃ (0.5 mmol), sal (1.5 mmol) and phen (0.5 mmol) by following the same procedure as above and the white colored precipitated complex was filtered, washed with ethanol and dried in vacuum.

Fig. 1 FTIR spectra of: (a) sal (b) $[Eu(sal)_3(phen)]$; (c) $[Eu_{0.5}Yb_{0.5}(sal)_3(phen)]$; (d) $[Yb(sal)_3(phen)]$

Synthesis of Complex [Eu _{0.5}Yb_{0.5} (sal)₃(phen)] (2)

The complex was synthesized by the taking sal (1.5 mmol), phen (0.5 mmol) in anhydrous ethanol solution (10 ml) and the reaction mixture was stirred for half an hour. EuCl₃ (0.5 mmol) and YbCl₃ (0.5 mmol) solutions in ethanol were mixed and stirred for half an hour. The ligands solutions and rare earth chlorides solutions were mixed and the pH of the solution was adjusted between 6 and 7 with dilute NaOH solution (1 mol L^{-1}). The resulting mixture was refluxed for 3 h at 70 °C with continuous stirring. The white coloured precipitates were filtered, washed with ethanol and then dried in a vacuum oven.

Results and Discussion

Compositions of Title Complexes

The elemental analysis data of C,H,N are listed in Table 1, which shows a good agreement between the experimental and calculated ones.

FTIR Studies

The FTIR spectra of the complexes under study and the ligand sal are shown in Fig. 1. The characteristic band at 1661 cm⁻¹ as observed in the Fig. 1a was attributed to the $v_{C=O}$ stretch of the carboxylate group of ligand SA. This band disappeared

Fig. 2 a Photoluminescent excitation spectra of Eu^{3+} emission monitored at 614 nm and Yb³⁺ emission monitored at 980 nm of [Eu $_{0.5}$ Yb_{0.5} (sal)₃(phen)]. **b** Room temperature photoluminescent emission spectra of (A) [Eu(sal)₃(phen)]; (B) [Eu_{0.5}Yb_{0.5} (sal)₃(phen)] excited at

384 nm. **c** Room temperature photoluminescent emission spectra of $[Yb(sal)_3(phen)]$ excited at 384 nm. **d** Decay curve of Eu³⁺, ⁵D₀ excited state (excitation wavelength : 384 nm; emission wavelength : 614 nm) of $[Eu_{0.5}Yb_{0.5} (sal)_3(phen)]$

and shifted downward to 1601, 1599 and 1596 cm^{-1} in the complexes (1),(2) and (3) respectively which suggested that the coordinate bonds were formed between oxygen atom of carboxylic group and rare earth ion. The broad band observed at 3421, 3426 and 3425 cm⁻¹ due to the $v_{0,H}$ stretching vibration revealed the coordination of hydroxyl group to the rare earth ion. The free isolated C = N group absorbs at 1589 cm⁻¹ in phen as reported in literature also shifted towards lower wavenumber at 1560, 1576 and 1575 cm^{-1} in the complexes (1), (2) and (3) respectively. The C-H stretching vibration of phen ring at 739 cm⁻¹, 853 cm⁻¹ also disappeared and new bands appeared at 730 cm⁻¹, 843 cm⁻¹ in complex (1), 738 cm⁻¹, 844 cm⁻¹ in complex (2) and 729 cm⁻¹, 845 cm⁻¹ in complex (3) respectively. These shifts prove that a coordination between N atoms of phen and rare earth ion had taken place. The characteristic $v_{(Eu-N)}$ and $v_{(Eu-O)}$ peaks at 530 and 457 cm^{-1} seen in Fig. 1b–d further confirms the formation of complexes.

Photoluminescence Studies

The room temperature excitation spectra of complex (2) was shown in Fig. 2a and was obtained by monitoring the longest emission wavelength of Eu^{3+} ion at 614 nm and Yb^{3+} ion at 980 nm. At 614 nm emission of Eu^{3+} ions, the excitation spectra of the complex exhibited a broad band at 290 nm attributable to the ligand to metal charge transfer (CT) transitions caused by the interaction between the organic ligands and the Eu^{3+} ions. The strong absorption band centered at 261 nm corresponded to the ligand to metal charge transfer transitions of Yb^{3+} ions. The presence of relatively strong CT absorption band in the excitation spectrum of Yb^{3+} ions reveals the energy transfer

Fig. 3 Schematic energy level diagram of complex $[Eu_{0.5}Yb_{0.5}$ (sal)₃(phen)] illustrating the cooperative energy transfer process from Eu^{3+} ion excited state (${}^{5}D_{0}$) to Yb^{3+} ion energy levels (${}^{2}F_{5/2}$), solid arrows show radiative transitions and dotted arrows show non-radiative transitions

from Eu³⁺ ions to Yb³⁺ ions [20]. The excitation spectrum also showed the sharp 4f-4f transitions of Eu³⁺ from the ⁷F₀ ground state to ⁵D_{3,4,6,7,1,2} excited states. The difference in energy between the ⁵D₂ -⁷F₀ transition of Eu³⁺ ions is twice the energy difference between ²F_{5/2} - ²F_{7/2} transition of Yb³⁺ ions, which means that the ⁵D₂ excited state of Eu³⁺ ion can simultaneously transfer energy to two nearby Yb³⁺ ions and hence the Yb³⁺ ions can emit two infrared photons. This absorption is followed by rapid multi-phonon assisted relaxation from the populated ⁵D₂ energy levels to the metastable energy levels of Eu³⁺ ions. This process is called cooperative energy transfer process and is responsible for the energy transfer from Eu³⁺ ions to Yb³⁺ ions as shown in the Fig. 3 [21].

The photoluminescent emission spectra of the complexes (1-3) in the visible region 550 to 700 nm and near infrared region from 900 to 1100 nm is shown in Fig. 2b and c. The emission spectra obtained by the excitation at 384 nm, we observed that the complexes (1) and (2) showed characteristic narrow emission peaks corresponding to the ${}^{5}D_{0} - {}^{7}F_{i}$ (J=0-4) transitions of Eu³⁺ ions. The emission peaks were well resolved and it was observed that the peak at 578 and 650 nm were weak since their corresponding transitions ${}^{5}D_{0}$ - ${}^{7}F_{0}$ and ${}^{5}D_{0}$ - ${}^{7}F_{3}$ were forbidden in magnetic and electric dipole fields. The peak at 591 nm was relatively strong and corresponded to ${}^{5}D_{0} - {}^{7}F_{1}$ magnetic transition, the strongest emission observed at 614 nm $({}^{5}D_{0} - {}^{7}F_{2})$ was an induced electric dipole transition sensitive to the coordination environment of Eu³⁺ ion. This transition was responsible for the red emission of the europium complexes. We also observed a change in intensity of peaks which was stronger in complex (1) as compared to complex (2). The decrease in intensity of all the emission peaks in complex (2) can be considered due to the energy transfer from Eu^{3+} ions to Yb^{3+}

Fig. 4 UV-vis absorption spectra of (a) phen; (b) sal; (c) $[Eu(sal)_3(phen)];$ (d) $[Eu_{0.5}Yb_{0.5} (sal)_3(phen)];$ (e) $[Yb(sal)_3(phen)]$

ions in the complexes. The Fig. 2c shows the emission spectrum of complex (3) which exhibited near infrared emission peaks at 980 and 1030 nm associated with the transition of Yb³⁺ from ²F_{5/2} level to ²F_{7/2} energy level. To further study the energy transfer from Eu³⁺ to Yb³⁺, the luminescence decay curve of ⁵D₀ excited state of Eu³⁺ at 394 nm and emission monitored at 614 nm for Eu³⁺ - Yb³⁺ complex is shown in Fig. 2d. The decay curve shows the lifetime quenching of Eu³⁺ emission due to the energy transfer from Eu³⁺ to Yb³⁺, with mean lifetime of 461 ps.

UV-vis Absorption Studies

The UV–vis absorption spectra of the ligands and their corresponding complexes in ethanol solution $(1 \times 10^{-5} \text{ mol/L})$ are shown in Fig. 4. It was observed that

Fig. 5 SEM micrographs of (**a**) [Eu (sal)₃(phen)]; (**b**) [Eu _{0.5}Yb_{0.5} (sal)₃(phen)]; (**c**) [Yb(sal)₃(phen)]

the absorption bands appearing at 234 nm, 302 nm and at 229 nm, 262 nm were assigned to the $\pi \rightarrow \pi^*$ transitions of aromatic ring of sal and phen respectively. The band profiles of the complexes were attributed to the organic ligands and were dominated by the absorption of phen which indicated that the fluorescence properties of the complexes were mainly determined by the energy transfer from phen to the rare earth ion. A slight red shift was observed and two main absorption bands observed at about 238 and 305 nm in the complexes revealed that both salicylic acid and phen took part in formation of the complexes and due to the formation of large conjugated chelate rings in the complexes, the main absorption bands shifted to longer wavelengths compared with the corresponding ligands. The results suggested that the ligands were successfully coordinated to the rare earth ion.

Morphological Studies

The Fig. 5 demonstrates the morphologies of the prepared complexes, which revealed the different microstructures for three complexes. Figure 5a showed the agglomerated spherical shape structure with narrow distribution while the corresponding Yb³⁺ complex showed a dense distribution of agglomerated particles as shown in Fig. 5c. Figure 5b depicted highly uniform and well dispersed mixed spherical and rod shape like particles. The results revealed that the mixed rare earth complex presented distinguishable morphology from the corresponding Eu³⁺ and Yb³⁺ complexes.

Conclusions

In summary, the mononuclear Eu^{3+} , Yb^{3+} and binuclear Eu^{3+} - Yb^{3+} complexes can be synthesized by the solution technique. A study of excitation, emission and decay measurements reveals the efficient energy transfer from Eu^{3+} to Yb^{3+} by cooperative energy transfer process, which leads to Eu^{3+} emission quenching and occurrence of near infrared emission at 980 and 1030 nm. Further, the decay measurements also indicates the effective energy transfer between the two rare earth ions. The morphological studies of the synthesized complexes also demonstrated the distinguishable morphology of binuclear complex than the mononuclear complexes. These mononucle ar complexes can act as potential candidates for application in optoelectronic devices in visible and near infrared region and dinuclear complexes can be utilized in photovoltaics.

Acknowledgments This work was supported by Guru Gobind Singh Indraprastha University, New Delhi for providing financial support as Indraprastha Research Fellowship for research work.

References

- Huihui W, Pei H, Haigang Y, Menglian G (2011) Synthesis, characterization and luminescent properties of a new europium(III) organic complex applied in near UV LED. Sensors Actuators B Chem 156:6
- Jun W, Xue ML, Feng S, Jun FG, Qing HL (2014) Photoresponding ionic complex containing azobenzene chromophore for use in birefringent film. Chin Chem Lett 25:15
- Dunjia W, Yan P, Chunyang Z, Ling F, Yanjun H, Xianhong W (2013) Preparation and photoluminescence of some europium (III) ternary complexes with β-diketone and nitrogen heterocyclic ligands. J Alloys Compd 574:54
- 4. Xi P, Zhao M, Gu X, Li Z, Gao M, Cheng B (2010) Synthesis, characterization and fluorescence properties of novel rare earth complexes with a multi-branched ligand and 1,10-phen. J Rare Earths 28: 277
- Chaolong Y, Jianxin L, Jianying M, Mangeng L, Liyan L, Bihai T (2011) Synthesis and photoluminescent properties of four novel trinuclear europium complexes based on two tris-β-diketones ligands. Dyes Pigments 92:696
- Yongquan W, Mei S, Limgzhi Z, Wei F, Fuyou L, Chunhui H (2014) Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo. Biomaterials 35:5830
- Lippy FM, Charlane CC, Humberto CG, Thiago MF, Sidney JLR, Jose DLD, Ricardo OF, Flavio CM (2014) Theoretical and experimental spectroscopic studies of the first highly luminescent binuclear

hydrocinnamate complexes of Eu(III), Tb(III) and Gd(III) with bidentate 2,2'-bipyridine ligand. J Lumin 148:307

- Yanxin W, Jianguo T, Linjun H, Yao W, Zhen H, Jixian L, Qingsong X, Wenfei SLA, Belfiroe (2013) Enhanced emission of nanoSiO₂-carried Eu³⁺ complexes and highly luminescent hybrid nanofibres. Opt Mater 35:1395
- Chaolong Y, Jianxin L, Jianying M, Dongyu Z, Lei M, Yunfei Z, Liyan L, Mangeng L (2012) Luminescent properties and CH₃COO⁻ recognition of europium complexes with different phenanthroline derivatives as second ligands. Synth Met 162:1097
- Matthias H, Marina L, Peter CJ, Ulrich HK (2013) Spectroscopic properties of lanthanoid benzene carboxylates in the solid state: part 3. N-heteroaromatic benzoates and 2-furanates. Polyhedron 52:804
- Alexey BG, Victor FS, Svetlana BM, Miki H, Grigory GA, Igor LE, WDolfgang L (2012) Structural and photophysical studies on ternary Sm(III), Nd(III), Yb(III), Er(III), complexes containing pyridyltriazole ligands. Polyhedron 47:37
- Edson MA, Cristina SF, Stanlei IK, Elizabeth BS (2013) Strongly luminescent, highly ionic europium in a lanthanum diphenylphosphinate matrix. Opt Mater 35:332
- James RS, Luciano AB, Gouveia N (2014) Multicolor frequency upconversion luminescence in Eu³⁺/ Tb³⁺/Yb³⁺ -codoped fluorogermanate glass excited at 980 nm. J Lumin 154:531
- 14. Robert DA, Gregory RL, Massey R, Neeraj S, Christopher DL, Baptiste G, Katherine LS, Maxim A, Julie MC (2014) Crystal structures of orthorhombic, hexagonal, and cubic compounds of the $Sm_{(x)}Yb_{(2-x)}TiO_5$ series. J Solid State Chem 213:182
- 15. Marvadeen ASW, Ishenkumba AK, Andrew JPW, David JW, Alan JL (2010) Tunable electronic interactions in small lanthanide(III) nanoclusters: the comparative effects of OH⁻ and O²⁻ supramolecular glues on europium(III)-to-dysprosium(III) energy transfer. Polyhedron 29:270
- Anthony BP, Jonas JJ, Philippe FS, Dirk P (2014) Luminescence of ytterbium in CaS and SrS. J Lumin 154:445
- Cao X, Wei T, Chen Y, Yin M, Guo C, Zhang W (2011) Increased downconversion efficiency and improved near infrared emission by different charge compensations in CaMoO₄:Yb³⁺ powders. J Rare Earths 29:1029
- Chenglin H, Wenyong S, Qiwei Z, Xiaoqian R, Penggan Y (2014) The photoluminescence from (Eu, Yb) co-doped silicon-rich Si oxides. J Lumin 154:339
- Maji S, Satendra K, Sankaran K (2015) Fluorescence and cofluorescence of Tb³⁺- Eu³⁺ in acetonitrile using 2,6-pyridine dicarboxylic acid as ligand. Spectrochim Acta A Mol Biomol Spectrosc 135:405
- Bejaoui A, Horchani NK, Hraiech S, Ferid M (2013) Optical properties of lutetium diphosphates powders doped by ytterbium. Opt Mater 36:310
- Zhou Y, Chen M, Guo S, Xu J, Gao G, Kong Q, Gang H, Jun L, Yan M, Yan G, Zheng Y (2010) Photoluminescence properties of dinuclear complexes in visible and near infrared region. J Rare Earths 28: 660